Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 87(2): 228-237, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38266493

RESUMO

As a model liverwort, Marchantia polymorpha contains various flavone glucuronides with cardiovascular-promoting effects and anti-inflammatory properties. However, the related glucuronosyltransferases have not yet been reported. In this study, two bifunctional UDP-glucuronic acid/UDP-glucose:flavonoid glucuronosyltransferases/glucosyltransferases, MpUGT742A1 and MpUGT736B1, were identified from M. polymorpha. Extensive enzymatic assays found that MpUGT742A1 and MpUGT736B1 exhibited efficient glucuronidation activity for flavones, flavonols, and flavanones and showed promiscuous regioselectivity at positions 3, 6, 7, 3', and 4'. These enzymes catalyzed the production of a variety of flavonoid glucuronides with medicinal value, including apigenin-7-O-glucuronide and scutellarein-7-O-glucuronide. With the use of MpUGT736B1, apigenin-4'-O-glucuronide and apigenin-7,4'-di-O-glucuronide were prepared by scaled-up enzymatic catalysis and structurally identified by NMR spectroscopy. MpUGT742A1 also displayed glucosyltransferase activity on the 7-OH position of the flavanones using UDP-glucose as the sugar donor. Furthermore, we constructed four recombinant strains by combining the pathway for increasing the UDP-glucuronic acid supply with the two novel UGTs MpUGT742A1 and MpUGT736B1. When apigenin was used as a substrate, the extracellular apigenin-4'-O-glucuronide and apigenin-7,4'-di-O-glucuronide production obtained from the Escherichia coli strain BB2 reached 598 and 81 mg/L, respectively. Our study provides new candidate genes and strategies for the biosynthesis of flavonoid glucuronides.


Assuntos
Flavanonas , Marchantia , Flavonoides/química , Apigenina , Glucuronídeos/metabolismo , Marchantia/metabolismo , Glucuronosiltransferase/química , Glucuronosiltransferase/metabolismo , Escherichia coli/metabolismo , Glucose , Ácido Glucurônico , Difosfato de Uridina
2.
PLoS One ; 19(1): e0296079, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38190396

RESUMO

Phenylpropanoids play important roles in plant physiology and the enzyme 4-coumarate: coenzyme A ligase (4CL) catalyzes the formation of thioesters. Despite extensive characterization in various plants, the functions of 4CLs in the liverwort Marchantia paleacea remain unknown. Here, four 4CLs from M. paleacea were isolated and functionally analyzed. Heterologous expression in Escherichia coli indicated the presence of different enzymatic activities in the four enzymes. Mp4CL1 and Mp4CL2 were able to convert caffeic, p-coumaric, cinnamic, ferulic, dihydro-p-coumaric, and 5-hydroxyferulic acids to their corresponding CoA esters, while Mp4CL3 and Mp4CL4 catalyzed none. Mp4CL1 transcription was induced when M. paleacea thalli were treated with methyl jasmonate (MeJA). The overexpression of Mp4CL1 increased the levels of lignin in transgenic Arabidopsis. In addition, we reconstructed the flavanone biosynthetic pathway in E. coli. The pathway comprised Mp4CL1, co-expressed with chalcone synthase (CHS) from different plant species, and the efficiency of biosynthesis was optimal when both the 4CL and CHS were obtained from the same species M. paleacea.


Assuntos
Arabidopsis , Flavanonas , Marchantia , Ligases , Marchantia/genética , Lignina , Escherichia coli/genética , Clonagem Molecular
3.
J Agric Food Chem ; 72(2): 1082-1095, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38169320

RESUMO

Oligomycins are potent antifungal and antitumor agents. Mass spectrometry (MS)- and nuclear magnetic resonance (NMR)-based metabolomic fingerprinting analysis of marine-derived actinomycetes in our in-house library provided an oligomycin-producing strain, Streptomyces sp. FXY-T5. Chemical investigation led to the discovery of five new oligomycins, 24-lumooligomycin B (1), 4-lumooligomycin B (2), 6-lumooligomycin B (3), 40-homooligomycin B (4), and 15-hydroxy-oligomycin B (5), together with seven biosynthetically related known derivatives. Their structures were assigned by MS, NMR, electronic circular dichroism (ECD), and single-crystal X-ray diffraction analyses. The biosynthesis pathway of oligomycins was first proposed based on the analysis of a type I modular polyketide synthase (PKS) system and targeted gene disruption. As expected, the isolated oligomycins showed significant antiagricultural fungal pathogen activity and antiproliferative properties from which the possible structure-activity relationships were first suggested. More importantly, oligomycins induced significant G1-phase cell cycle arrest on cancer cells and significantly attenuated their Cyclin D1 and PCNA expression through a ß-catenin signaling pathway.


Assuntos
Antineoplásicos , Streptomyces , Streptomyces/química , Oligomicinas/farmacologia , Oligomicinas/química , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Relação Estrutura-Atividade , Antifúngicos/farmacologia
4.
J Nat Prod ; 87(1): 132-140, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38157445

RESUMO

Mylnudones A-G (1-7), unprecedented 1,10-seco-aromadendrane-benzoquinone-type heterodimers, and a highly rearranged aromadendrane-type sesquiterpenoid (8), along with four known analogs (9-12), were isolated from the liverwort Mylia nuda. Compounds 1-6 and 7, bearing tricyclo[6.2.1.02,7] undecane and tricyclo[5.3.1.02,6] undecane backbones, likely formed via a Diels-Alder reaction and radical cyclization, respectively. Their structures were determined by spectroscopic analysis, computational calculation, and single-crystal X-ray diffraction analysis. Dimeric compounds displayed cytoprotective effects against glutamic acid-induced neurological deficits.


Assuntos
Alcanos , Hepatófitas , Sesquiterpenos de Guaiano , Sesquiterpenos , Hepatófitas/química , Estrutura Molecular , Sesquiterpenos/farmacologia , Sesquiterpenos/química , China
5.
J Cell Physiol ; 238(10): 2499-2511, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37642286

RESUMO

Family 1 UDP-glycosyltransferases (UGTs) are known to glycosylate multiple secondary plant metabolites and have been extensively studied. The increased availability of plant genome resources allows the identification of wide gene families, both functional and organizational. In this investigation, two MpUGT isoforms were cloned and functionally characterized from liverworts marchantia polymorpha and had high glycosylation activity against several flavonoids. MpUGT735A2 protein, in particular, tolerates a wide spectrum of substrates (flavonols, flavanones, flavones, stilbenes, bibenzyls, dihydrochalcone, phenylpropanoids, xanthones, and isoflavones). Overexpression of MpUGT735A2 and MpUGT743A1 in Arabidopsis thaliana enhances the accumulation of 3-O-glycosylated flavonol (kaempferol 3-O-glucoside-7-O-rhamnose), consistent with its in vitro enzymatic activity. Docking and mutagenesis techniques were applied to identify the structural and functional properties of MpUGT735A2 with promiscuous substrates. Mutation of Pro87 to Ser, or Gln88 to Val, substantially altered the regioselectivity for luteolin glycosylation, predominantly from the 3'-O- to the 7-O-position. The results were elucidated by focusing on the novel biocatalysts designed for producing therapeutic flavonoids. This investigation provides an approach to modulate MpUGT735A2 as a candidate gene for diverse glycosylation catalysis and a tool to design GTs with new substrate specificities for biomedical applications.

6.
J Agric Food Chem ; 71(34): 12775-12784, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37604680

RESUMO

Isoflavones are rich natural compounds present in legumes and are essential for plant growth and development. Moreover, they are beneficial for animals and humans. Isoflavones are primarily found as glycoconjugates, including calycosin-7-O-ß-d-glucoside (CG) in Astragalus membranaceus, a legume. However, the glycosylation mechanism of isoflavones in A. membranaceus remains unclear. In the present study, three uridine diphosphate (UDP)-glycosyltransferases (UGTs) that may be involved in the biosynthesis of isoflavone were identified in the transcriptome of A. membranaceus. Enzymatic analysis revealed that AmUGT88E29 and AmUGT88E30 had high catalytic activity toward isoflavones in vitro. In addition, AmUGT88E29 and AmUGT88E30 could accept various flavones, flavanones, flavonols, dihydroflavonols, and dihydrochalcones as substrates. AmUGT71G10 was only active against phloretin and dihydroresveratrol. Overexpression of AmUGT88E29 significantly increased the contents of CG, an isoflavone glucoside, in the hairy roots of A. membranaceus. This study provided candidate AmUGT genes for the potential metabolic engineering of flavonoid compounds in plants and a valuable resource for studying the calycosin glycosides biosynthesis pathway.


Assuntos
Fabaceae , Isoflavonas , Animais , Humanos , Glicosiltransferases/genética , Astragalus propinquus/genética , Glicosilação , Flavonoides , Verduras , Glucosídeos
7.
Phytochemistry ; 214: 113796, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37499849

RESUMO

- Seven previously undescribed ent-eudesmane sesquiterpenoids (1-7), as well as seven known analogs (8-14), were isolated from the Chinese liverwort Chiloscyphus polyanthus var. rivularis. Their structures were established based on comprehensive spectroscopy analysis, electronic circular dichroism calculations, as well as biosynthetic considerations. The cytotoxicity against HepG2 (Human hepatocellular carcinomas) cancer cell line, and antifungal activity against Candida albicans SC5314 of all isolated ent-eudesmane sesquiterpenoids were preliminarily tested, results showed that the tested compounds did not display obvious cytotoxicity and antifungal activities under the tested concentration.


Assuntos
Antifúngicos , Antineoplásicos , Hepatófitas , Sesquiterpenos de Eudesmano , Sesquiterpenos , Antifúngicos/farmacologia , Antifúngicos/química , China , Hepatófitas/química , Estrutura Molecular , Sesquiterpenos/química , Sesquiterpenos de Eudesmano/farmacologia , Sesquiterpenos de Eudesmano/química , Células Hep G2/efeitos dos fármacos , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia
8.
Phytochemistry ; 212: 113702, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37149119

RESUMO

Three unprecedented ent-labdane and pallavicinin based dimers pallamins A-C formed via [4 + 2] Diels-Alder cycloaddition, together with eight biosynthetically related monomers were isolated from Pallavicinia ambigua. Their structures were determined by the extensive analysis of HRESIMS and NMR spectra. The absolute configurations of the labdane dimers were determined by single crystal X-ray diffraction of the homologous labdane units, and 13C NMR and ECD calculations. Moreover, a preliminary evaluation of the anti-inflammatory activities of the isolated compounds was performed using the zebrafish model. Three of the monomers demonstrated significant anti-inflammatory activity.


Assuntos
Diterpenos , Hepatófitas , Animais , Diterpenos/farmacologia , Diterpenos/química , Hepatófitas/química , Estrutura Molecular , Peixe-Zebra , China
9.
J Nat Prod ; 86(4): 739-750, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36888988

RESUMO

Eleven new pyridone alkaloids, penicipyridones A-K (1-11), and three new tetramic acids, tolypocladenols D-F (12-14), were isolated from rice media cultures of the marine-derived fungus Penicillium oxalicum QDU1. Their structures, including absolute configurations, were determined by comprehensive analyses of spectroscopic data, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction data. Interestingly, several of the penicipyridones undergo interconversions between hydroxy and methoxy groups at C-4 in acidic MeOH solution. Furthermore, in an acidic aqueous solution, OH-4 could be replaced by diverse substituent groups. Compounds 1, 4, 5, 8, 10, 11, and 14 exhibited moderate inhibitory effects on NO production in the LPS-induced RAW264.7 macrophages, with IC50 values ranging from 9.2 to 19 µM.


Assuntos
Alcaloides , Penicillium , Alcaloides/química , Penicillium/química , Fungos , Piridonas/química , Estrutura Molecular
10.
Steroids ; 192: 109188, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36738818

RESUMO

In our process of studying fusidane-type antibiotics, metabolomics-guided chemical investigation on the endophytic Acremonium pilosum F47 led to the isolation of two unique heterodimers, acremonidiols B and C (1 and 2) consisting of a fusidane-type triterpenoid motif and a steroid unit. Four biosynthetically related known natural products including fusidic acid (FA, 3), as well as ergosterol derivatives (4-6) were also obtained. Their structures were determined by the analyses of ESI-HRMS and NMR data. Compounds 1 and 2, as hybrid molecules comprising the fusidane triterpenoid and steroid, are rare in nature. Compared with the clinically used antibiotic FA (3), new compounds 1 and 2 showed no obvious antibiotic activity, indicating the importance of free C-21 carboxyl group for antibacterial activity.


Assuntos
Endófitos , Triterpenos , Endófitos/química , Ácido Fusídico/química , Antibacterianos/farmacologia , Antibacterianos/química
11.
J Org Chem ; 88(5): 3185-3192, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36812072

RESUMO

Mass spectrometry (MS)-based metabolic profiling of the endophytic fungus Chaetomium nigricolor F5 guided the isolation of five novel cytochalasans, chamisides B-F (1-5), and two known ones, chaetoconvosins C and D (6 and 7). Their structures including stereochemistry were unambiguously determined by MS, nuclear magnetic resonance, and single-crystal X-ray diffraction analyses. Compounds 1-3 share a new 5/6/5/5/7-fused pentacyclic skeleton in cytochalasans and are appropriately proposed to be the key biosynthetic precursors of co-isolated cytochalasans with a 6/6/5/7/5, 6/6/5/5/7, or 6/6/5 ring system. Remarkably, compound 5 with a relatively flexible side chain showed promising inhibition activity against the cholesterol transporter protein Niemann-Pick C1-like 1 (NPC1L1), expanding the function of cytochalasans.


Assuntos
Sordariales , Estrutura Molecular , Fungos , Citocalasinas/farmacologia , Citocalasinas/química
12.
Plant Sci ; 329: 111599, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36682585

RESUMO

The enzyme flavone synthase Is (FNS Is) converts flavanones to flavones, whereas flavanone 3ß-hydroxylases (F3Hs) catalyze the formation of dihydroflavonols, a precursor of flavonols and anthocyanins. Canonical F3Hs have been characterized in seed plants, which are evolutionarily related to liverwort FNS Is. However, as important evolutionary lineages between liverworts and seed plants, ferns FNS Is and F3Hs have not been identified. In the present study, we characterized a bifunctional enzyme PnFNS I/F3H from the fern Psilotum nudum. We found that PnFNS I/F3H catalyzed the conversion of naringenin to apigenin and dihydrokaempferol. In addition, it catalyzed five different flavanones to generate the corresponding flavones. Site-directed mutagenesis results indicated that the P228-Y228 mutant protein displayed the FNS I/F2H activity (catalyzing naringenin to generate apigenin and 2-hydroxynaringenin), thus having similar functions as liverwort FNS I/F2H. Moreover, the overexpression of PnFNS I/F3H in Arabidopsis tt6 and dmr6 mutants increased the content of flavones and flavonols in plants, further indicating that PnFNS I/F3H showed FNS I and F3H activities in planta. This is the first study to characterize a bifunctional enzyme FNS I/F3H in ferns. The functional transition from FNS I/F3H to FNS I/F2H will be helpful in further elucidating the relationship between angiosperm F3Hs and liverwort FNS Is.


Assuntos
Gleiquênias , Flavanonas , Flavonas , Apigenina , Antocianinas , Gleiquênias/metabolismo , Oxigenases de Função Mista/metabolismo , Flavonas/metabolismo , Flavanonas/metabolismo , Flavonóis
13.
Nat Prod Res ; 37(15): 2525-2531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35319315

RESUMO

Two new diterpenoids, 12,15-di-O-acetylhypargenin B (1) and taiwanin F-12-O-ß-D-glucopyranoside (2), one new monoterpenoid, (S)-7-methyl-3-methyleneoct-6-ene-1,2-diyl diacetate (3), together with eight known compounds (4-11), were obtained from the twigs and leaves of Nageia fleuryi Hickel. The structures of the new compounds were elucidated by extensive spectroscopic techniques including HR-ESI-MS and 1 D and 2 D NMR experiments. Spectroscopic data of the known compound 4 were provided for the first time. Compounds 1 and 11 exhibited strong inhibitory activity on LPS-stimulated production of NO in RAW 264.7 murine macrophages, while compounds 1, 3, and 5 showed significant quinone reductase inducing activity in Hepa 1c1c7 murine hepatoma cells. Moreover, compounds 7 and 8 showed inhibitory activity against the proliferation of the human prostate carcinoma DU145 cells.


Assuntos
Macrófagos , Folhas de Planta , Camundongos , Animais , Humanos , Linhagem Celular , Espectroscopia de Ressonância Magnética , Folhas de Planta/química , Estrutura Molecular , Óxido Nítrico
14.
New Phytol ; 237(2): 515-531, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36062450

RESUMO

Unlike bibenzyls derived from the vascular plants, lunularic acid (LA), a key precursor for macrocyclic bisbibenzyl synthesis in nonvascular liverworts, exhibits the absence of one hydroxy group within the A ring. It was hypothesized that both polyketide reductase (PKR) and stilbenecarboxylate synthase 1 (STCS1) were involved in the LA biosynthesis, but the underlined mechanisms have not been clarified. This study used bioinformatics analysis with molecular, biochemical and physiological approaches to characterize STCS1s and PKRs involved in the biosynthesis of LA. The results indicated that MpSTCS1s from Marchantia polymorpha catalyzed both C2→C7 aldol-type and C6→C1 Claisen-type cyclization using dihydro-p-coumaroyl-coenzyme A (CoA) and malonyl-CoA as substrates to yield a C6-C2-C6 skeleton of dihydro-resveratrol following decarboxylation and the C6-C3-C6 type of phloretin in vitro. The protein-protein interaction of PKRs with STCS1 (PPI-PS) was revealed and proved essential for LA accumulation when transiently co-expressed in Nicotiana benthamiana. Moreover, replacement of the active domain of STCS1 with an 18-amino-acid fragment from the chalcone synthase led to the PPI-PS greatly decreasing and diminishing the formation of LA. The replacement also increased the chalcone formation in STCS1s. Our results highlight a previously unrecognized PPI in planta that is indispensable for the formation of LA.


Assuntos
Marchantia , Salicilatos , Coenzima A/química
15.
ACS Omega ; 7(49): 45624-45635, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530227

RESUMO

Gibberellins (GAs) are well-known tetracyclic diterpenoid phytohormones since the 1950s. In this work, eight skeletally diverse GAs (1-8) including four new compounds (1-4), and three known ent-kaurene diterpenoids (9-11), were isolated from the endophytic fungus Fusarium sp. NJ-F5 by integrating mass spectrometry (MS)- and nuclear magnetic resonance (NMR)-based metabolic profiling. Their planar structures and stereochemistry were determined by extensive spectroscopic analyses including MS, NMR, as well as electronic circular dichroism and their calculations, together with single-crystal X-ray diffraction studies. As far as we know, this is a rare report of naturally occurring GAs and their detailed spectroscopic data including MS and NMR in recent decades. Compound 1, as a new member of GAs family, showed an obvious promoting effect on the seedling's growth ofArabidopsis thaliana.

16.
Antioxidants (Basel) ; 11(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36358536

RESUMO

Liverworts, considered to be the first plant type to successfully make the transition from water to land, can resist different oxidative stress. As characteristic constituents of liverworts, the bibenzyls are efficient antioxidants. In this study, spatial distributions of the bibenzyls within Marchantia polymorpha L., the model species of liverworts, were mapped using airflow-assisted desorption electrospray ionization imaging mass spectrometry. Bibenzyls were found to largely exist in the female receptacle of M. polymorpha, where lunularic acid was found to focus in the central region and bisbibenzyls were enriched in the periphery. The region-specific gene expression and antioxidant activities were characterized. In line with the spatial feature of bibenzyls, higher MpSTCS1A and Mp4CL expression levels and antioxidant ability were exhibited in the archegoniophore. The expression level of MpSTCS1A, and the content of total phenolic acid was increased after UV-B irradiation, suggesting bibenzyls play an important role in UV-B tolerance. Moreover, lunularic acid and extract of archegoniophore at a certain concentration can stimulate the spore germination under normal conditions and UV-B stress. These works broaden our understanding of the significance of bibenzyls in spore propagation and environmental adaptation.

17.
Microb Cell Fact ; 21(1): 210, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36242071

RESUMO

BACKGROUND: Flavonoid C-glycosides have many beneficial effects and are widely used in food and medicine. However, plants contain a limited number of flavonoid C-glycosides, and it is challenging to create these substances chemically. RESULTS: To screen more robust C-glycosyltransferases (CGTs) for the biosynthesis of flavonoid C-glycosides, one CGT enzyme from Stenoloma chusanum (ScCGT1) was characterized. Biochemical analyses revealed that ScCGT1 showed the C-glycosylation activity for phloretin, 2-hydroxynaringenin, and 2-hydroxyeriodictyol. Structure modeling and mutagenesis experiments indicated that the glycosylation of ScCGT1 may be initiated by the synergistic action of conserved residue His26 and Asp14. The P164T mutation increased C-glycosylation activity by forming a hydrogen bond with the sugar donor. Furthermore, when using phloretin as a substrate, the extracellular nothofagin production obtained from the Escherichia coli strain ScCGT1-P164T reached 38 mg/L, which was 2.3-fold higher than that of the wild-type strain. Finally, it is proved that the coupling catalysis of CjFNS I/F2H and ScCGT1-P164T could convert naringenin into vitexin and isovitexin. CONCLUSION: This is the first time that C-glycosyltransferase has been characterized from fern species and provides a candidate gene and strategy for the efficient production of bioactive C-glycosides using enzyme catalysis and metabolic engineering.


Assuntos
Gleiquênias , Glicosiltransferases , Escherichia coli/metabolismo , Gleiquênias/metabolismo , Flavonoides/metabolismo , Glicosídeos , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Floretina , Açúcares
18.
Front Microbiol ; 13: 922089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910634

RESUMO

Natural products from actinomycetes serve as a crucial source of clinical pharmaceuticals, especially antibiotics and anticancer agents. Among them, polycyclic xanthones belong to a growing group of highly oxygenated aromatic polyketides with a xanthone-containing angular hexacyclic framework. These biosynthetically unique small molecules are of great interest due to their wide spectrum of biological activities, especially the remarkable antibacterial activity against gram-positive bacteria and the significant antineoplastic effects toward various cancer cells at nanomolar concentrations. Their complex structures and significant bioactivities have aroused considerable attention in the chemical and biological communities in recent decades. This review covers the isolation, the biosynthesis, and the biological studies toward these structurally complex and biologically active molecules.

19.
J Integr Plant Biol ; 64(10): 1935-1951, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35920566

RESUMO

The key enzymes involved in the flavonoid biosynthesis pathway have been extensively studied in seed plants, but relatively less in ferns. In this study, two 4-Coumarate: coenzyme A ligases (Sc4CL1 and Sc4CL2) and one novel chalcone synthase (ScCHS1) were functionally characterized by mining the Stenoloma chusanum transcriptome database. Recombinant Sc4CLs were able to esterify various hydroxycinnamic acids to corresponding acyl-coenzyme A (CoA). ScCHS1 could catalyze p-coumaroyl-CoA, cinnamoyl-CoA, caffeoyl-CoA, and feruloyl-CoA to form naringenin, pinocembrin, eriodictyol, and homoeriodictyol, respectively. Moreover, enzymatic kinetics studies revealed that the optimal substrates of ScCHS1 were feruloyl-CoA and caffeoyl-CoA, rather than p-coumaroyl-CoA, which was substantially different from the common CHSs. Crystallographic and site-directed mutagenesis experiments indicated that the amino acid residues, Leu87, Leu97, Met165, and Ile200, located in the substrate-binding pocket near the B-ring of products, could exert a significant impact on the unique catalytic activity of ScCHS1. Furthermore, overexpression of ScCHS1 in tt4 mutants could partially rescue the mutant phenotypes. Finally, ScCHS1 and Sc4CL1 were used to synthesize flavanones and flavones with multi-substituted hydroxyl and methoxyl B-ring in Escherichia coli, which can effectively eliminate the need for the cytochrome P450 hydroxylation/O-methyltransferase from simple phenylpropanoid acids. In summary, the identification of these important Stenoloma enzymes provides a springboard for the future production of various flavonoids in E. coli.


Assuntos
Gleiquênias , Flavanonas , Flavonas , Sequência de Aminoácidos , Gleiquênias/genética , Ácidos Cumáricos , Escherichia coli/genética , Escherichia coli/metabolismo , Flavanonas/metabolismo , Flavonoides/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Metiltransferases/metabolismo , Aminoácidos
20.
Chem Biodivers ; 19(9): e202200559, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35843891

RESUMO

An unprecedented 4,9-seco-oplopanane (1), two undescribed drimane epimers (2 and 3), and five known drimane sesquiterpenoids (4-8) were isolated from the Chinese liverwort Lejeunea flava (Sw.) Nees. The structures of the new sesquiterpenoids were determined using nuclear magnetic resonance spectroscopy, electronic circular dichroism calculations, and single-crystal X-ray diffraction measurements. The inhibitory capacity of the new compounds against nitric oxide production in lipopolysaccharide-induced RAW 264.7 murine macrophages, along with the cytotoxicity of the new compounds against A549 and HepG-2 human cancer cell lines, were discussed.


Assuntos
Anemone , Hepatófitas , Sesquiterpenos , Animais , China , Hepatófitas/química , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Óxido Nítrico , Sesquiterpenos Policíclicos , Sesquiterpenos/química , Sesquiterpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...